Telegram Group & Telegram Channel
Какие методы оптимизации в машинном обучении вы знаете?

Оптимизация — это, в сущности, процесс настройки алгоритма таким образом, чтобы минимизировать или максимизировать определённую функцию потерь.

🟣 Градиентный спуск. Самый простой и известный метод. Параметры модели обновляются с помощью градиента, чтобы прийти к точке минимума. Градиент — это вектор, направление которого совпадает с направлением наискорейшего локального возрастания функции. Соответственно, нас интересует антиградиент, то есть направление наискорейшего локального убывания.

🟣 Стохастический градиентный спуск. Вариация метода выше. В этом случае мы подменяем вычисление градиента по всей выборке вычислением по случайной подвыборке. Это ускоряет процесс обучения.

🟣 Градиентный спуск с моментом. Ещё одна вариация. С математической точки зрения, мы добавляем к градиентному шагу ещё одно слагаемое, которое содержит информацию о предыдущих шагах.

🟣 Adagrad. Адаптация стохастического градиентного спуска. Алгоритм адаптирует размер шага для каждого параметра индивидуально, что позволяет более эффективно находить оптимум.

🟣 RMSprop. Метод, разработанный для решения проблемы быстрого уменьшения скорости обучения в Adagrad.

🟣 Adam (ADAptive Momentum). Объединяет в себе идеи градиентного спуска с моментом и RMSprop.



tg-me.com/ds_interview_lib/101
Create:
Last Update:

Какие методы оптимизации в машинном обучении вы знаете?

Оптимизация — это, в сущности, процесс настройки алгоритма таким образом, чтобы минимизировать или максимизировать определённую функцию потерь.

🟣 Градиентный спуск. Самый простой и известный метод. Параметры модели обновляются с помощью градиента, чтобы прийти к точке минимума. Градиент — это вектор, направление которого совпадает с направлением наискорейшего локального возрастания функции. Соответственно, нас интересует антиградиент, то есть направление наискорейшего локального убывания.

🟣 Стохастический градиентный спуск. Вариация метода выше. В этом случае мы подменяем вычисление градиента по всей выборке вычислением по случайной подвыборке. Это ускоряет процесс обучения.

🟣 Градиентный спуск с моментом. Ещё одна вариация. С математической точки зрения, мы добавляем к градиентному шагу ещё одно слагаемое, которое содержит информацию о предыдущих шагах.

🟣 Adagrad. Адаптация стохастического градиентного спуска. Алгоритм адаптирует размер шага для каждого параметра индивидуально, что позволяет более эффективно находить оптимум.

🟣 RMSprop. Метод, разработанный для решения проблемы быстрого уменьшения скорости обучения в Adagrad.

🟣 Adam (ADAptive Momentum). Объединяет в себе идеи градиентного спуска с моментом и RMSprop.

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/101

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

How to Use Bitcoin?

n the U.S. people generally use Bitcoin as an alternative investment, helping diversify a portfolio apart from stocks and bonds. You can also use Bitcoin to make purchases, but the number of vendors that accept the cryptocurrency is still limited. Big companies that accept Bitcoin include Overstock, AT&T and Twitch. You may also find that some small local retailers or certain websites take Bitcoin, but you’ll have to do some digging. That said, PayPal has announced that it will enable cryptocurrency as a funding source for purchases this year, financing purchases by automatically converting crypto holdings to fiat currency for users. “They have 346 million users and they’re connected to 26 million merchants,” says Spencer Montgomery, founder of Uinta Crypto Consulting. “It’s huge.”

Why Telegram?

Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.

Библиотека собеса по Data Science | вопросы с собеседований from ye


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA